Abstract

A linear increase in thermal boundaries towards the bottom of the porous cavity is considered for numerical flow analysis on MHD natural convection. The two-dimensional square shaped cavity is filled with the Cu-water nanofluid. The dimensionless equations are considered to interpret the fluid and heat flow inside the cavity with respect to the desired boundaries. The governing equations are solved using the finite difference techniques. The relevant dimensionless parameters used in the present study are Rayleigh number, Darcy number, solid volume fraction of the nanoparticles and Hartmann number to obtain the flow fields. Heatline flows picturization techniques involved in the study analyze the heat flow inside the cavity. As the Rayleigh number and Darcy number increases, an increase in streamlines flow velocity and convection heat transfer is observed. Convective heat transfer is interrupted by increasing the applied magnetic field effects. An improvement in the heat transfer is noticed by increasing the solid volume fraction of the particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call