Abstract
With an increasingly elderly population globally, the impacts of cerebrovascular diseases, such as stroke and dementia, become increasingly significant. Haemorrhagic transformation (HT) is one of the most common complications of ischaemic stroke that is caused by dysfunction of endothelial cells in the blood–brain barrier (BBB) and that can be exacerbated by thrombolytic therapy. Recent studies also suggest that HT can lead to an increase in intracranial pressure (ICP) and result in capillary compression. The aim of this study is to develop a mathematical model that can be used to simulate the consequence of HT over a range of vasculature length scales. We use a 2D vasculature model to investigate the severity of HT with different vascular geometry. The resulting model shows that the haematoma radius is approximately constant across different length scales (100-1000μm) and in good agreement with the available experimental data. In addition, this study identified that the effects of capillary compression do appear to have a significant impact on the leakage fraction of blood and hence act to restrain the development of a haematoma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.