Abstract

Industries such as Aircraft manufacturing, nuclear power plants and oil refineries witness a wide range of applications in dissimilar welded joints considering the advantage of strength and high corrosion resistance. The primary objective of this research is to study the dissimilar metal joints of pure Copper and Stainless Steel 304 using Electron Beam Welding for nuclear power plant applications. The various physical properties of both metal varies. Joining of copper is also not feasible by using existing welding methods due its high thermal conductivity and subsequently joining of these dissimilar materials is more complex. Electron Beam welding is a useful method in joining such dissimilar metal combinations. The heat generated by the electron beam melts the metals in different ratios because of the difference in the melting point of metals. Even though various researches has been focused in the area of dissimilar metal joints, no researcher worked to predict the heat energy rate of electron beam and the melting volume of metals. In this work, the volume of copper melted and volume of Stainless Steel 304 melted with respect to the heat generation has been found out by means of numerical calculations. The distribution of heat in both metals is also found using ANSYS software. A mathematical model is also created using MINITAB software and the volume of copper and Stainless Steel 304 melted with respect to the heat energy is predicted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call