Abstract
For scholars, mining data and extracting information from huge databases has emerged as an intriguing field of study. Since a few decades ago, the concept of using data mining techniques to extract information has been around. The dataset was originally intended to be partitioned and the inherent features examined using classification and clustering algorithms. They base their predictions on these characteristics. These forecasts have been made in the area of educational data mining for a variety of reasons, including to predict student success based on personal characteristics and help students find the right professors and courses. These goals have been drawn from the attrition and retention of students. These objectives are the focus of our research on student attrition and retention. Additionally, we have found exciting variables that aid in predicting students' success, suggesting the most qualified instructors, and assisting them in course selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.