Abstract

A class of generic spatially extended fractional reaction-diffusion systems that modelled predator-prey interactions is considered. The first order time derivative is replaced with the Caputo fractional derivative of order γ ∈ (0, 1). The local analysis where the equilibrium points and their stability behaviours are determined is based on the adoption of qualitative theory for dynamical systems ordinary differential equations. We derived conditions for Hopf bifurcation analytically. Most significantly, existence conditions for a unique stable limit cycle in the phase plane are determined analytically. Our analytical findings are in agreement with the numerical results presented in one and two dimensions. The system of fractional nonlinear reaction-diffusion equations has demonstrated the usefulness of understanding the dynamics of nonlinear phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.