Abstract

A mathematical model for the growth of thin Clostridium thermocellum biofilms on cellulose sheets with penetration from the surface into the interior fiber matrix is formulated, and used to assess the potential of CO2 on-line measurements for activity of cellulolytic biofilms. The biofilm growth model is linked to a product formation model. It includes the processes of carbon substrate consumption, biofilm growth, biofilm upkeep, and carbon dioxide production. The mathematical description leads to a system of ordinary differential equations that is simple enough to lend itself to qualitative analysis, yet complex enough to capture the essential features of the system. Numerical fitting of the model against experimental data showed excellent quantitative agreement. The model substantiates the utility of on-line CO2 measurements as indicator of cellulose substrate colonization and consumption, which may be useful for reporting bioreactor performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.