Abstract

Biomethanation offers a promising route for the valorization of synthesis gas, yet significant challenges arise from the limited conversion of carbon monoxide (CO). This study investigated the adaptation of an anaerobic microbiome in a continuous trickle bed reactor (TBR) with CO as the sole carbon and energy source. We evaluated reactor performance and microbial community changes under different CO loading rates and gas retention times (GRT). Optimal performance was achieved at a CO loading rate of 5.16 Nm³ m⁻³ d⁻¹ and a GRT of 60.6 min, resulting in average production rates of 0.99 Nm³ m⁻³ d⁻¹ for CH₄ and 2.55 Nm⁻³ m⁻³ d⁻¹ for CO₂, with an 88 % CO conversion rate. Microbial analysis indicated that the community was dominated by the genus Methanothermobacter, known for its ability to utilize CO as a sole substrate, followed by a co-dominance of syntrophic acetate-oxidizing bacteria Syntrophaceticus. This syntrophic relationship between Methanothermobacter and Syntrophaceticus is expected to be crucial for the efficient CO conversion process. Additionally, the study proposes a two-reactor system for converting synthesis gas to grid-quality methane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.