Abstract

The stationary flow in the “liquid-liquid-gas” system in a horizontal channel with solid impermeable upper and lower walls is investigated. Mathematical modeling in each of the layers of the system is based on exact solutions of a special type of Navier-Stokes equations in the Boussinesq approximation. The processes of vapor evaporation or condensation at the liquid-gas interface are modeled using the boundary conditions of the problem. In the upper layer the thermal diffusion effect and the effect of diffusional thermal conductivity are taken into account. Examples of three-layer flows for the “silicone oil - water - air” system are given. The influence of the thermal regime at the boundaries of the system and the thickness of the upper layer on the longitudinal velocity and temperature distribution is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.