Abstract

At present, the problem of general thermal modernization of building envelopes is given much attention both at the level of scientists and consumers. This is one of the effective ways to reduce natural gas consumption, reduce the negative impact on the environment, maintain and improve comfortable indoor conditions. Over the last decade, the population has rapidly begun to insulate their homes in order to raise the indoor air temperature to a comfortable level in the multi-storey residential sector. Due to insufficient attention of the authorities in the housing and communal sector, the lack of scientific research and widespread public awareness, there is a massive thermal insulation of building by residents of multi-store buildings within their own apartments. But the study of thermal processes that occur in individual thermal insulation of enclosing structures is currently not fully completed. Therefore, in the context of significant increases in gas and electricity prices, this problem is relevant.
 In the study was carried out mathematical modeling of a fragment of a partially insulated wall of an enclosing structure with determination of heat flux by solving a three-dimensional differential equation of thermal conductivity with boundary conditions of II, III and IV kind and distribution of characteristics of building structures and insulation. These results can be used in the analysis of the efficiency of insulation of the building taking into account the fragmentary insulation and of comparison with systemic thermal modernization.
 As a result of modeling, the three-dimensional temperature fields of wall surfaces, are determined, there are additional heat fluxes (thermal bridges), which are not considered in the simplified one-dimensional calculation. In one-dimensional calculation, the heat flux from the wall is reduced by 2.43 times during insulation. Taking into account the total heat flow from the side surfaces near the window (thermal bridges) and system insulation - by 1.75 times. With fragmentary insulation and considering the total heat flux from the side surfaces near the window - by 1.6 times.
 The next stage of calculations is the determination of the actual air temperatures in the premises of a multi-storey building considering the actual condition of enclosing structures and heating systems, heaters, mode parameters of the coolant and outdoor air parameters. The methods and means of this analysis can take into account the final data of heat loss adjustment after the mathematical modeling presented in this paper. In consequence, the results will be taken into account in the projects of thermal modernization of buildings, reconstruction of heating systems, rational placement of sources, selection of equipment and regulation of devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.