Abstract

The fluid dynamics in the flow-through cell (USP apparatus 4) has been predicted using the mathematical modeling approach of computational fluid dynamics (CFD). The degree to which flow structures in this apparatus can be qualified as ‘ideal’ both spatially and temporally has been assessed. The simulations predict the development of the velocity field in this apparatus for configurations with and without beads during the discharge stroke of the pump. When the cell is operated only with the red ruby bead (‘open column’ mode), highly non-uniform flow is predicted just downstream of the bead in the latter stages of the pump's pulse. In contrast, a strong degree of profile uniformity and symmetry is predicted throughout the entire pulse in the region of the tablet holder for both standard configurations involving beads. However, noticeable differences in the tablet shear stress distribution are predicted at times when the same instantaneous inlet flow rates are being pumped through the apparatus. This effect is caused by flow separation in the velocity boundary layer formed around the tablet under the influence of an adverse pressure gradient, an effect not predicted with constant (non-pulsating) flow. While the degree of tablet erosion correlates with the average flow rate, during a particular pulse both the free-stream velocity and the boundary layer thickness are also influential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.