Abstract

Numerical modeling has been used to investigate the influence of electromagnetic stirring on melting of a single piece of scrap in an eccentric bottom tapping (EBT) electric arc furnace (EAF). The heat transfer and fluid flow in the melt for both conditions with and without electromagnetic stirring were studied. The buoyancy and electromagnetic forces were considered as the source terms for momentum transfer in the studied conditions. The enthalpy-porosity technique was applied to track the phase change of a scrap piece defined in the EBT region of the furnace. Different scrap sizes, preheating temperatures, stirring directions and force magnitudes were considered, and the heat transfer coefficient was estimated from the heat transfer rate at the melt-scrap interface. The results showed that electromagnetic stirring led to a reduced melting time and an increased heat transfer coefficient by a factor of four. The results for Nusselt number versus Grashof number for natural convection and Reynolds number for electromagnetic stirring were compared with those obtained through correlations from previous studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.