Abstract

High-pressure carbon dioxide inactivation curves of Saccharomyces cerevisiae at different temperatures were analysed using the modified Gompertz model. Comparable lambda and mu values were obtained under pressure treatment as function of temperature. The phase of disappearance (lambda) and the inactivation rate (mu) of S. cerevisiae were inversely related. Higher mu values were obtained at 50 degrees C than at 40, 30 and 20 degrees C under 10.0 MPa CO2 pressure. Increased pressure and temperature had significant effects on the survival of S. cerevisiae. Arrhenius, linear and square-root models were used to analyse the temperature dependence of the inactivation rate constant. For the Arrhenius model the activation energy (E(mu)) was 56.49 kJ/mol at 10.0 MPa, and 55.70, 53.83 and 52.20 kJ/mol at 7.5, 5.0, and 2.5 MPa, respectively. Results of this study enable the prediction of yeast inactivation exposed to different CO2 pressures and temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.