Abstract
The theory of nonlinear statics and dynamics of flexible plates, taking into account the modified couple stress theory and temperature field, is developed. The theory is based on the classical Kirchhoff model for an isotropic elastic body. Geometric nonlinearity is taken into account according to the von Kármán model. Variational differential equations are yielded by the Hamilton principle, and partial differential equation (PDE's) related to displacements of the middle surface and deflection are derived. The hypotheses of the modified couple stress theory implied an increase of the order of the system of partial differential equations due to the fact that moments of higher order appeared. The resolved PDE's are reduced to the Cauchy problem by the method of finite differences of the second order accuracy, which is solved by methods of the Runge-Kutta type (from the fourth to the eighth order of accuracy) and the Newmark method. No restrictions are imposed on the temperature field, and it determined from the solution of the three-dimensional heat equation using the finite element method (FEM). The convergence of the proposed algorithms is investigated depending on the number of finite elements and the time step. Static problems are solved by the dynamic approach. Nonlinear dynamics is analyzed based on (Fourier spectrum, wavelets of different types and phase portraits). The analysis of Lyapunov exponents obtained by different methods (Kantz, Wolf, Rosenstein, Sano-Sawada and the authors method) is carried out, which validated occurrence of chaotic vibrations. Hyperchaotic vibrations have been detected and studied. It is also illustrated how increase of the temperature field influences localization of the chaotic zones for size-dependent plates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.