Abstract

AbstractPhysical and mathematical modeling of jet-bath interactions in electric arc furnaces represent valuable tools to obtain a better fundamental understanding of oxygen gas injection into the furnace. In this work, a 3D mathematical model is developed based on the two phase approach called Volume of Fluid (VOF), which is able to predict free surface deformations and it is coded in the commercial fluid dynamics software FLUENTTM. Validation of the mathematical model is achieved by measurements on a transparent water physical model. Measurements of free surface depressions through a high velocity camera and velocity patterns are recorded through a Particle Image Velocimetry (PIV) Technique. Flow patterns and depression geometry are identified and characterized as function of process parameters like distance from nozzle to bath, gas flow rate and impingement angle of the gas jet into the bath. A reasonable agreement is found between simulated and experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.