Abstract
The use of gas jets (oxygen) plays a key role in several steelmaking processes as in the Basic Oxygen Furnace (BOF) or in the Electric Arc Furnace (EAF). Those jets improve heat, mass and momentum transfer in the liquid metal, mixing of chemical species enhancing and govern the formation of foaming slag. In this work experimental measurements were performed to determine the dimensions of the cavity formed at the liquid free surface caused by a gas jet impinging on it; also velocities vectors were measured in the zone affected by the gas jet. Cavities were measured from images from high speed camera and the vector maps were obtained with a Particle Image Velocimetry (PIV) technique. Both velocities and cavities were determined as a function of the main process variables: gas flow rate, distance of the nozzle from the free surface and lance angle. Cavity dimensions were statistically processed treated as a function of the process variables and also as a function of the proper dimensionless numbers that govern these phenomena. It was found thatWeber and Froude numbers govern the cavity geometry. Liquid flow driven by the jet is mainly affected by the air flow rate, lance height and angle.
Highlights
INTRODUCCIÓNDiferentes correlaciones adimensionales descritas en la literatura para la profundidad de la cavidad como función de las variables principales cuando un chorro de gas incide en la superficie libre del baño líquido[4]
The use of gas jets plays a key role in several steelmaking processes as in the Basic Oxygen Furnace (BOF) or in the Electric Arc Furnace (EAF)
In this work experimental measurements were performed to determine the dimensions of the cavity formed at the liquid free surface caused by a gas jet impinging on it; velocities vectors were measured in the zone affected by the gas jet
Summary
Diferentes correlaciones adimensionales descritas en la literatura para la profundidad de la cavidad como función de las variables principales cuando un chorro de gas incide en la superficie libre del baño líquido[4]. Se presentan junto con los perfiles, medidos con la técnica PIV, de velocidad del líquido en movimiento por la transferencia de cantidad de movimiento del chorro y se analizan como función de las principales variables de proceso, como flujo de gas, distancia entre tobera y superficie libre, ángulo de la tobera con respecto a la superficie libre y diámetro de la tobera. Este trabajo se distingue de los anteriores porque presenta, de manera conjunta, mediciones de los perfiles de velocidad y geometría de la cavidad formada (ancho o diámetro y profundidad), así como correlaciones obtenidas estadísticamente, que describen la geometría de la cavidad como función de las principales variables de proceso y, también, como función de los principales números adimensionales involucrados en el mismo
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.