Abstract

The design criteria of an extracorporeal circuit suitable for pulsatile flow are quite different and more entangled than for steady flow. The time and costs of the design process could be reduced if mutual influences between the pulsatile pump and other extracorporeal devices were considered without experimental trial-and-error activities. With this in mind, we have developed a new lumped-parameter mathematical model of the hydraulic behavior of the arterial side of an extracorporeal circuit under pulsatile flow conditions. Generally, components feature a resistant-inertant-compliant behavior and the most relevant nonlinearities are accounted for. Parameter values were derived either by experimental tests or by analytical analysis. The pulsatile pump is modeled as a pure pulsatile flow generator. Model predictions were compared with flow rate and pressure tracings measured during hydraulic tests on two different circuits at various flow rates and pulse frequencies. The normalized root mean square error did not exceed 24% and the model accurately describes the changes that occur in the basic features of the pressure and flow wave propagating from the pulsatile pump to the arterial cannula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.