Abstract

Cellular response to inflammatory stimuli leads to the production of eicosanoids—prostanoids (PRs) and leukotrienes (LTs)—and signaling molecules—cytokines and chemokines—by macrophages. Quantitative modeling of the inflammatory response is challenging owing to a lack of knowledge of the complex regulatory processes involved. Cybernetic models address these challenges by utilizing a well-defined cybernetic goal and optimizing a coarse-grained model toward this goal. We developed a cybernetic model to study arachidonic acid (AA) metabolism, which included two branches, PRs and LTs. We utilized a priori biological knowledge to define the branch-specific cybernetic goals for PR and LT branches as the maximization of TNFα and CCL2, respectively. We estimated the model parameters by fitting data from three experimental conditions. With these parameters, we were able to capture a novel fourth independent experimental condition as part of the model validation. The cybernetic model enhanced our understanding of enzyme dynamics by predicting their profiles. The success of the model implies that the cell regulates the synthesis and activity of the associated enzymes, through cybernetic control variables, to accomplish the chosen biological goal. The results indicated that the dominant metabolites are PGD2 (a PR) and LTB4 (an LT), aligning with their corresponding known prominent biological roles during inflammation. Using heuristic arguments, we also infer that eicosanoid overproduction can lead to increased secretion of cytokines/chemokines. This novel model integrates mechanistic knowledge, known biological understanding of signaling pathways, and data-driven methods to study the dynamics of eicosanoid metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call