Abstract

Atmospheric flow equations govern the time evolution of chemical concentrations in the atmosphere. When considering gas and particle phases, the underlying partial differential equa- tions involve advection and diffusion operators, coagulation effects, and evaporation and conden- sation phenomena between the aerosol particles and the gas phase. Operator splitting techniques are generally used in global air quality models. When considering organic aerosol particles, the modeling of the thermodynamic equilibrium of each particle leads to the determination of the con- vex envelope of the energy function. Two strategies are proposed to address the computation of convex envelopes. The first one is based on a primal-dual interior-point method, while the second one relies on a variational formulation, an appropriate augmented Lagrangian, an Uzawa iterative algorithm, and finite element techniques. Numerical experiments are presented for chemical sys- tems of atmospheric interest, in order to compute convex envelopes in various space dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.