Abstract
Relevance. The volume of steel production in Russia and in the world has doubled over the past 20 years, the cost of steel in Russia in the period from October 2018 to March 2020 increased from 45 thousand rubles to 105 thousand rubles. This determines the urgency of developing energy-efficient steel production technologies that will reduce the cost of production. The most common technology for the producing steel of the full metallurgical cycle involves iron reduction in blast furnaces and characterized by significant emissions of pollutants into the environment. One of the most promising areas of environmentally friendly and energy-efficient steel production is non-straw production. At the moment, there are about a hundred different iron recovery processes, some of them have been brought to industrial use. Aim. To develop a fuel supply system in a perforated hearth, eliminating heat losses in the steelmaking unit by organizing a perforated hearth, which allows heat to be returned to the working space of the furnace by heating the reducing agent. Methods. Numerical modeling by Volume of Fluid (VOF) and Euler-Euler (EE) methods. Results. The authors have determined the rate of supply of reducing gas, which ensures its conversion to carbon and hydrogen at the entrance to the working area of the furnace. It was found that the surface temperature of the perforated hearth on the gas side is 380°C, on the melt side does not exceed 1313°C, which is significantly lower than the melting point of the refractory material.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have