Abstract

To ensure sterility of a solid–liquid mixture processed in continuous-flow ohmic systems, the slowest-heating solid particle needs to receive sufficient heat treatment at the outlet of the holding section. We describe herein, the development of a mathematical model for solid–liquid mixtures in a commercial ohmic heater with electric field oriented perpendicular to the flow. The fastest moving particle velocity was identified using over 299 particles and a radio-frequency identification technique, and used as an input to the model for the worst-case heating scenario. Thermal verification was conducted by comparing predicted and measured fluid temperatures at heater and hold tube outlets; the model showed good agreement between calculated and experimental fluid temperatures (P>0.05) with a maximum error of 0.4°C. The model predicted a hold tube length of 15.85m at 134.0°C process temperature to achieve a target lethal effect at the cold spot of the slowest-heating particle. Using this length of hold tube, microbiological tests were conducted using at least 299 chicken/alginate particles inoculated with Clostridium sporogenes spores per run. These tests showed the absence of viable microorganisms at the target treatment and positive growth when temperatures were below target, thereby verifying model predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.