Abstract
To accomplish continuous flow ohmic heating of a low-acid food product, sufficient heat treatment needs to be delivered to the slowest-heating particle at the outlet of the holding section. This research was aimed at developing mathematical models for sterilization of a multicomponent food in a pilot-scale ohmic heater with electric-field-oriented parallel to the flow and validating microbial inactivation by inoculated particle methods. The model involved 2 sets of simulations, one for determination of fluid temperatures, and a second for evaluating the worst-case scenario. A residence time distribution study was conducted using radio frequency identification methodology to determine the residence time of the fastest-moving particle from a sample of at least 300 particles. Thermal verification of the mathematical model showed good agreement between calculated and experimental fluid temperatures (P > 0.05) at heater and holding tube exits, with a maximum error of 0.6 °C. To achieve a specified target lethal effect at the cold spot of the slowest-heating particle, the length of holding tube required was predicted to be 22 m for a 139.6 °C process temperature with volumetric flow rate of 1.0 × 10(-4) m3/s and 0.05 m in diameter. To verify the model, a microbiological validation test was conducted using at least 299 chicken-alginate particles inoculated with Clostridium sporogenes spores per run. The inoculated pack study indicated the absence of viable microorganisms at the target treatment and its presence for a subtarget treatment, thereby verifying model predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.