Abstract

Abstract We present a mathematical model of COVID-19 disease by modifying the SEIR model. The model considers two additional compartments, quarantine (Q) and vaccination (V) which aim to control the spread of COVID-19. Based on the model, we obtained a disease-free equilibrium point and an endemic equilibrium point. The basic reproduction numbers were calculated using the next-generation matrix method. In this model, we analyzed the stability conditions that must be satisfied by the defining parameters. We perform data on the spread of COVID-19 in Indonesia for estimation to provide the parameter value in the model. Based on the result, there is an influence of changes in several parameter values on the number of individuals infected with COVID-19.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.