Abstract

Abstract Partially surface wetting has a great influence on friction losses in the fluid flow in both the pipeline system and the complex shape of hydraulic elements. In many hydraulic elements (valves, pump impellers), cavitation is generated, which significantly changes the hydraulic flow parameters, so the last part of the article is devoted to the mathematical solution of this phenomena and evaluates the impact of wall wetting on the size and shape of the cavitation area which appears in the nozzle and in small gaps at special conditions. If the cavitation appears e. g. near the wall of pipes, the blades of turbine or a pump, then it destroys the material surface. On the basis of this physical experiment (nozzle), a two-dimensional (2D) mathematical cavitation model of Schnerr-Sauer was made and calculated shape and size of the cavitation region was compared with the experiment. Later this verified model of cavitation was used for cavitation research flow with partial surface wetting. The pressure drop and the size of the cavitation area as it flows from partially surface wetting theory was tested depending on the adhesion coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call