Abstract
Paper presents a numerical simulation of the occurrence of flow instability and pressure self-oscillations for a complex configuration of the gas-dynamic tract in combustion chamber. Unsteady axisymmetric two-dimensional Navier-Stokes equations are used for mathematical modelling of compressible one-phase medium. To simulate turbulence, the k-ε and LES models were used. Fast Fourier Transform (FFT) determined the frequency spectrum of pressure pulsations in the combustion chamber. It is shown that in the case of a simple geometry of the free gas cavity in combustion chamber, both models of turbulence make it possible to determine the spectrum of the natural acoustic frequencies. Using the LES model in the case of complex geometry makes it possible to predict the hydrodynamic structure of a flow accurately. The flow, in this case, has an intensive vortex generation. Formation of small-scale vortex occurs in the near-wall regions and large eddies in the core of a flow. Frequency of large eddies formation can be combined with the natural acoustic frequencies of combustion chamber and can affect the amplitude of pressure pulsations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.