Abstract
We analyse the steady convection boundary layer flow of a second order non-Newtonian fluid near a wedge structure embedded in a Darcy−Brinkman porous medium. The governing equations are formulated using a boundary layer theory, then transformed into pseudo-similarity equations and these equations are subsequently solved using the powerful Nakamura finite difference method. Solutions are produced for surface shear stress and local heat transfer at the wedge face. The effects of viscoelasticity coefficient, K, Reynolds number, Re, Prandtl number, Pr, and Darcy number, Da, are presented graphically and discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have