Abstract

Nanofluids are extremely beneficial to scientists because of their excellent heat transfer rates, which have numerous medical and industrial applications. The current study deals with the peristaltic flow of nanofluid (i.e., Casson nanofluid) in a symmetric elastic/compliant channel. Buongiorno’s framework of nanofluids was utilized to create the equations for flow and thermal/mass transfer along with the features of Brownian motion and thermophoresis. Slip conditions were applied to the compliant channel walls. The thermal field incorporated the attributes of viscous dissipation, ohmic heating, and thermal radiation. First-order chemical-reaction impacts were inserted in the mass transport. The influences of the Hall current and mixed convection were also presented within the momentum equations. Lubricant approximations were exploited to make the system of equations more simplified for the proposed framework. The solution of a nonlinear system of ODEs was accomplished via a numerical method. The influence of pertinent variables was examined by constructing graphs of fluid velocity, temperature profile, and rate of heat transfer. The concentration field was scrutinized via table. The velocity of the fluid declined with the increment of the Hartman number. The effects of thermal radiation and thermal Grashof number on temperature showed opposite behavior. Heat transfer rate was improved by raising the Casson fluid parameter and the Brownian motion parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.