Abstract

Abstract The present investigation concentrates on three dimensional unsteady forced bio-convection flow of a viscous fluid. An incompressible flow of a micropolar nanofluid encloses micro-organisms past an exponentially stretching sheet with magnetic field is analyzed. By employing convenient transformation the partial differential equations are converted into the ordinary differential equations which are non-linear. By using shooting method to solved these equations numerically. The influence of the determining parameters on the velocity, temperature, micro-rotation, nanoparticle volume fraction, microorganism are incorporated. The skin friction, heat transfer rate, and the microorganism rate are analyzed. The results depicts that the value of the wall shear stress and Nusselt number are declined while an enhancement take place in the microorganism number. The slip parameters increases the velocity, thermal energy, and microorganism number consequentially. The present investigation are important in improving achievement of microbial fuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call