Abstract

In this paper, a Galerkin weighted Residual method is used in providing an analytical solution of two-dimensional contaminant flow problem with non-zero initial concentration. The equation is described by advection, dispersion, adsorption, first order decay and zero-order source. It is assumed that the adsorption term is modeled by Freudlich isotherm. Using Bubnov-Galerkin method, the governing equation was converted to a discrete problem. Thereafter, the approximate solution of the resulting system of initial value problem was obtained. The results obtained are expressed in graphical form to show the effect of change in the parameters on the concentration of the contaminants. From the analysis of the results, it was discovered that the contaminant concentration decreases with increase in the distance from the origin while it increases with increase in the zero-order source coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.