Abstract
We study the approximate solution of initial value problems for parameter dependent finite or infinite systems of scalar ordinary differential equations (ODEs). Both the deterministic and the randomized setting is considered, with input data from various smoothness classes. We study deterministic and Monte Carlo multilevel algorithms and derive convergence rates. Moreover, we prove their optimality by showing matching (in some limit cases up to logarithmic factors) lower bounds and settle this way the complexity. Comparisons between the deterministic and randomized setting are given, as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.