Abstract

In the past few years, many studies have suggested that subjects with high sensory precision in the processing of non-symbolic numerical quantities (approximate number system; ANS) also have higher math abilities. At the same time, there has been interest in another non-cognitive factor affecting mathematical learning: mathematical anxiety (MA). MA is defined as a debilitating emotional reaction to mathematics that interferes with the manipulation of numbers and the solving of mathematical problems. Few studies have been dedicated to uncovering the interplay between ANS and MA and those have provided conflicting evidence. Here we measured ANS precision (numerosity discrimination thresholds) in a cohort of university students with either a high (>75th percentile; n = 49) or low (<25th percentile; n = 39) score on the Abbreviate Math Anxiety Scale (AMAS). We also assessed math proficiency using a standardized test (MPP: Mathematics Prerequisites for Psychometrics), visuo-spatial attention capacity by means of a Multiple Objects Tracking task (MOT) and sensory precision for non-numerical quantities (disk size). Our results confirmed previous studies showing that math abilities and ANS precision correlate in subjects with high math anxiety. Neither precision in size-discrimination nor visuo-spatial attentional capacity were found to correlate with math capacities. Interestingly, within the group with high MA, our data also revealed a relationship between ANS precision and MA, with MA playing a key role in mediating the correlation between ANS and math achievement. Taken together, our results suggest an interplay between extreme levels of MA and the sensory precision in the processing of non-symbolic numerosity.

Highlights

  • Numerical and mathematical competencies are central predictors of an individual’s success in life

  • mathematical anxiety (MA) has been defined as feelings of apprehension and increased physiological reactivity when individuals have to manipulate numbers, solve mathematical problems, or when they are exposed to an evaluative situation connected to math (Hembree, 1990; Ashcraft, 2002)

  • We measured the difference in math anxiety between the students in the high mathematical anxiety (HMA) and low mathematical anxiety (LMA) group that turned out in being highly statistically significant [t(86) = -21.85, p < 0.001]

Read more

Summary

INTRODUCTION

Numerical and mathematical competencies are central predictors of an individual’s success in life. The importance of our study, which took into consideration several possible differences between subjects with high and low math anxiety, relies on the fact that such multidimensional analysis is the most suitable tool to investigate the effect of MA on both low-level quantity processing (ANS) as well as high-level mathematical proficiency Such an approach is likely to allow a full understanding of the interplay between MA, math achievements and ANS, but will improve understanding of the brain mechanisms underpinning these processes, as well as providing useful information about how to optimize mathematical learning procedures or customized early targeted interventions

Participants
Procedure
RESULTS
DISCUSSION
ETHICS STATEMENT
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call