Abstract

Parents transmit genetic and epigenetic information to their offspring. Maternal effect genes regulate the offspring epigenome to ensure normal development. Here we report that the epigenetic regulator SMCHD1 has a maternal effect on Hox gene expression and skeletal patterning. Maternal SMCHD1, present in the oocyte and preimplantation embryo, prevents precocious activation of Hox genes post-implantation. Without maternal SMCHD1, highly penetrant posterior homeotic transformations occur in the embryo. Hox genes are decorated with Polycomb marks H2AK119ub and H3K27me3 from the oocyte throughout early embryonic development; however, loss of maternal SMCHD1 does not deplete these marks. Therefore, we propose maternal SMCHD1 acts downstream of Polycomb marks to establish a chromatin state necessary for persistent epigenetic silencing and appropriate Hox gene expression later in the developing embryo. This is a striking role for maternal SMCHD1 in long-lived epigenetic effects impacting offspring phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.