Abstract

IntroductionStudies have demonstrated leptin involvement in the physiology and pathophysiology of pregnancy and suggest that leptin may be a prognostic marker for some complications of pregnancy although the association remains unclear. To date no studies have reported leptin reference intervals established in normal pregnancy, which could be used for interpreting the differences in leptin levels found in normal and pathological pregnancies.ObjectiveTo determine leptin concentrations at delivery, in maternal serum in normal pregnancy and in cord blood and to establish reference intervals for leptin.Material and methodsThe study was performed in 194 pregnant women without any comorbid health conditions. Leptin concentrations in maternal serum and in cord blood were measured by ELISA and subsequently analyzed by gestational age (weeks), maternal Body Mass Index (BMI), mode of delivery and infant gender and birth weight. For comparative analyses of normally distributed variables, parametric tests such as the Student–t were used to test the assumption of homogeneity or non-homogeneity of variance and a One-Way ANOVA when more than two groups were compared. The Pearson correlation coefficient was calculated to assess the correlation between normally distributed variables (p<0.05). The reference intervals for leptin were obtained by referring to the central 95% of laboratory test values.ResultsIn normal pregnant women, the mean serum leptin concentration at delivery was 37.17 ± 28.07 ng/mL and the established reference interval was 33.19–41.14 ng/mL. The mean leptin concentration in cord blood was 14.78 ± 15.97 ng/mL and the established reference interval was 12.32–17.67 ng/mL. There was a statistically significant positive correlation between maternal serum and cord blood leptin concentrations (r = 0.37; p = 0.00). Mean leptin concentrations in cord blood increased with gestational age (p = 0.00). No statistically significant differences in maternal serum and cord blood leptin concentrations were found in regard to mode of delivery and neonatal gender. A statistically significant correlation was found between maternal serum leptin and third-trimester BMI (r = 0.22; p = 0.00), but there was no association between maternal BMI and cord blood leptin concentration. There was a statistically significant positive correlation between cord blood leptin concentration and birth weight (r = 0.23; p = 0.00).ConclusionsReference intervals for leptin in maternal serum and in cord blood established in normal pregnancy could be used in clinical practice for interpreting the differences in leptin concentrations found in normal pregnancy and in complications of pregnancy. The results indicate a strong association between maternal serum leptin levels and obesity and between cord blood leptin levels and birth weight.

Highlights

  • Studies have demonstrated leptin involvement in the physiology and pathophysiology of pregnancy and suggest that leptin may be a prognostic marker for some complications of pregnancy the association remains unclear

  • The results indicate a strong association between maternal serum leptin levels and obesity and between cord blood leptin levels and birth weight

  • Leptin is of key importance during the first stages of pregnancy since it modulates such processes as proliferation, protein synthesis, invasion and apoptosis in placental cells which are critical for normal development of the placenta [4]

Read more

Summary

Methods

The study was performed in 194 pregnant women without any comorbid health conditions. Leptin concentrations in maternal serum and in cord blood were measured by ELISA and subsequently analyzed by gestational age (weeks), maternal Body Mass Index (BMI), mode of delivery and infant gender and birth weight. For comparative analyses of normally distributed variables, parametric tests such as the Student–t were used to test the assumption of homogeneity or non-homogeneity of variance and a One-Way ANOVA when more than two groups were compared. The Pearson correlation coefficient was calculated to assess the correlation between normally distributed variables (p

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.