Abstract

Early life adversity is widely recognized as a key risk factor for early developmental perturbations and contributes to the presentation of neuropsychiatric disorders in adulthood. Neurodevelopmental disorders exhibit a strong sex bias in susceptibility, presentation, onset, and severity, although the underlying mechanisms conferring vulnerability are not well understood. Environmental perturbations during pregnancy, such as malnutrition or stress, have been associated with sex-specific reprogramming that contribute to increased disease risk in adulthood, whereby stress and nutritional insufficiency may be additive and further exacerbate poor offspring outcomes. To determine whether maternal supplementation of docosahexanoic acid (DHA) exerts an effect on offspring outcome following exposure to early prenatal stress (EPS), dams were fed a purified 10:1 omega-6/omega-3 diet supplemented with either 1.0% preformed DHA/kg feed weight (DHA-enriched) or no additional DHA (denoted as the control diet, CTL). Dams were administered chronic variable stress during the first week of pregnancy (embryonic day, E0.5–7.5), and developmental milestones were assessed at E 12.5. Exposure to early prenatal stress (EPS) decreased placenta and embryo weight in males, but not females, exposed to the CTL diet. DHA enrichment reversed the sex-specific decrease in placenta and embryo weight following EPS. Early prenatal exposure upregulated expression of genes associated with oxygen and nutrient transport, including hypoxia inducible factor 3α (HIF3α), peroxisome proliferator-activated receptor alpha (PPARα), and insulin-like growth binding factor 1 (IGFBP1), in the placenta of CTL diet males exposed to EPS. DHA enrichment in EPS-exposed animals abrogated the male-specific upregulation of PPARα, HIF3α, and IGFBP1. Taken together, these studies suggest that maternal dietary DHA enrichment may buffer against maternal stress programming of sex-specific outcomes during early development.

Highlights

  • Environmental perturbations during pregnancy, such as stress and malnutrition, are key risk factors for neurodevelopmental and neuropsychiatric disorders [1, 2]

  • Effect of early prenatal stress (EPS) and maternal diet on litter characteristics To determine whether prenatal stress, docosahexanoic acid (DHA) enrichment, or its interaction alter litter characteristics, we assessed for the combined treatment effects on litter size, fetal loss, and sex ratio

  • Collectively, this study yielded two results regarding the interaction between maternal stress and dietary DHA enrichment in embryonic day 12.5 conceptuses

Read more

Summary

Introduction

Environmental perturbations during pregnancy, such as stress and malnutrition, are key risk factors for neurodevelopmental and neuropsychiatric disorders [1, 2]. Dimorphic patterns in energy substrate utilization have been observed during this window of early prenatal stress exposure, suggesting that the heightened male vulnerability to prenatal insults may be related to basal sex differences in metabolic requirements of male and female embryos [15, 16]. Exposure to chronic variable stressors during the first week of gestation resulted in dysregulation of placental genes involved in fatty acid transport and glucose metabolic processes in male, but not female, placentas in a mouse model of early prenatal stress (EPS) [18, 20, 21]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call