Abstract

Rotavirus (RV) vaccine efficacy is significantly reduced in lower- and middle-income countries (LMICs) compared to high-income countries. This review summarizes current research into the mechanisms behind this phenomenon, with a particular focus on the evidence that maternal antibody (matAb) interference is a contributing factor to this disparity. All RV vaccines currently in use are orally administered, live-attenuated virus vaccines that replicate in the infant gut, which leaves their efficacy potentially impacted by both placentally transferred immunoglobulin G (IgG) and mucosal IgA Abs conferred via breast milk. Observational studies of cohorts in LMICs demonstrated an inverse correlation between matAb titers, both in serum and breast milk, and infant responses to RV vaccination. However, a causal link between maternal humoral immunity and reduced RV vaccine efficacy in infants has yet to be definitively established, partially due to limitations in current animal models of RV disease. The characteristics of Abs mediating interference and the mechanism(s) involved have yet to be determined, and these may differ from mechanisms of matAb interference for parenterally administered vaccines due to the contribution of mucosal immunity conferred via breast milk. Increased vaccine doses and later age of vaccine administration have been strategies applied to overcome matAb interference, but these approaches are difficult to safely implement in the setting of RV vaccination in LMICs. Ultimately, the development of relevant animal models of matAb interference is needed to determine what alternative approaches or vaccine designs can safely and effectively overcome matAb interference of infant RV vaccination.

Highlights

  • All RV vaccines currently in use are orally administered, live-attenuated virus vaccines that replicate in the infant gut, which leaves their efficacy potentially impacted by both placentally transferred immunoglobulin G (IgG) and mucosal IgA Abs conferred via breast milk

  • This review focuses on current evidence supporting maternal antibody (matAb) interference as a contributor, remaining questions, and proposed modifications to increase the efficacy of current vaccine regimens

  • This study indicated that the fragment crystallizable (Fc) region is necessary to inhibit Ab responses to vaccination and that this inhibition is due to interaction with Fcγ receptor IIB (FcγRIIB) [36]

Read more

Summary

OPEN ACCESS

All RV vaccines currently in use are orally administered, live-attenuated virus vaccines that replicate in the infant gut, which leaves their efficacy potentially impacted by both placentally transferred immunoglobulin G (IgG) and mucosal IgA Abs conferred via breast milk. Most studies investigating the role of matAb interference focus on placentally transferred IgG [24] Evidence from both population-level observational and animal modeling studies suggest that breast milk–derived matAb interferes with RV vaccine efficacy [10,25,26]. While the Rotavac trial did not investigate breast milk Abs as a contributor to matAb interference, modeling of RV infection using the murine RV strain Epizoonotic Diarrhea of Infant Mice (EDIM) showed that seropositive BALB/c dams conferred Abs to their pups, primarily through breastfeeding, which impaired pups’ immune responses to live RV inoculation [26]

Composition matAb interference reported?
Potential solutions for matAb interference to RV vaccines
Findings
Prospects for overcoming matAb interference to infant RV vaccination
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call