Abstract

Three experiments were conducted to evaluate the effect of yeast-derived carbohydrates (YDC), and a blend of probiotics and YDC (synbiotic, SNB) on serum IgG concentration, maternal-derived antibody (MDA) decay, and specific antibody-mediated immune response in chick pullets following immunization with T-cell dependent antigens. A total of 300 day-old pullet chicks were randomly assigned to 3 dietary treatments including: a basal diet (Control), and diets containing YDC, and SNB (Lactobacillus acidophilus, L. casei, Streptococcus faecium, and Bacillus subtilis, and YDC). In experiment one, on d 1 and wk 3, 4, 5, and 6, blood samples were collected and serum were analyzed by ELISA for total IgG (Y), and MDA against Newcastle disease virus (NDV) and infectious bursal disease virus (IBDV). The second experiment examined the specific antibody against infectious bronchitis virus (IBV) in pullet chicks following vaccination against IBV at d 1. Finally, in experiment 3, on d 21 and 28 posthatch, 10 birds per treatment were immunized intramuscularly with both sheep red blood cells (SRBC) and bovine serum albumin (BSA), and 11 after immunization serum samples were analyzed by hemagglutination assay for antibody response to SRBC, and by ELISA for serum IgM and IgG response to BSA. The results demonstrated that diet containing SNB increased serum IgG at wk 3 posthatch. However, the decay rate of MDA against NDV and IBDV were not affected by dietary treatments. Birds fed YDC showed higher specific antibody response against IBV in wk 4, while both diets containing YDC and SNB decreased antibody response to IBV in wk 6. In addition, specific antibody response against SRBC and BSA was not affected by diets. In conclusion, supplementation of diet with SNB improved humoral immunity by increasing IgG concentration in serum, and modulated the adaptive antibody-mediated immune response against IBV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.