Abstract

Here, we evaluate maternal offloading of 16 trace elements (Essential: Co, Cr, Cu, Fe, Mn, Ni, Se and Zn; Nonessential: Al, As, Ba, Cd, Hg, Pb, Tl and U) and determine mother-offspring isotopic fractionation of δ13C and δ15N in muscle and liver tissue of four pregnant Mustelus higmani and 18 associated embryos sampled from the Amazon Coast of Brazil. Embryo muscle tissue had significantly higher concentrations of most trace elements when compared to mothers, with the exception of Hg. Embryo liver accumulated more nonessential elements than muscle (n = 7 vs. 0, respectively), while the Se:Hg molar ratio was >1 in liver and muscle of both mothers and embryos. Livers of embryos were moderately enriched in δ13C and δ15N when compared to that of their mother. Negative correlations were observed between embryo body length and δ13C and trace elements concentrations. We conclude that mothers offload a large portion of all essential elements and Al, As and Pb to their young and that the isotopic fractionation of embryos reflects maternal diet and habitat occupied, with δ13C diluted with embryonic growth. We also show that muscle and liver accumulate trace elements at different rates relative to the body length of embryos. The Se:Hg molar ratio suggests that Se could play a protective role against Hg toxicity during early stages of M. higmani embryonic development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.