Abstract

Next-generation Li-ion battery technology awaits materials that not only store more electrochemical energy at finite rates but also exhibit superior control over side reactions and better thermal stability. Herein, we hypothesize that designing an appropriate particle morphology can provide a well-balanced set of physicochemical interactions. Given the anode-centric nature of primary degradation modes, we investigate three different carbon particles-commercial graphite, spherical carbon, and spiky carbon-and analyze the correlation between particle geometry and functionality. Intercalation dynamics, side reaction rates, self-heating, and thermal abuse behavior have been studied. It is revealed that the spherical particle outperforms an irregular one (commercial graphite) under thermal abuse conditions, as it eliminates unstructured inhomogeneities. A spiky particle with ordered protrusions exhibits smaller intercalation resistance and attenuated side reactions, thus outlining the benefits of controlled stochasticity. Such findings emphasize the importance of tailoring particle morphology to proffer selectivity among multimodal interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call