Abstract

Redox flow batteries (RFBs) are a promising electrochemical storage solution for power sector decarbonization, particularly emerging long-duration needs. While the battery architecture can host many different redox chemistries, the vanadium RFB (VRFB) represents the current state-of-the-art due to its favorable combination of performance and longevity. However, the relatively high and volatile price of vanadium has hindered VRFB financing and deployment opportunities. Here we evaluate the vanadium supply chain to understand how it enables or constrains VRFB advancement and assess opportunities for accelerated growth. We find that – while vanadium may not be scarce – its abundance is confounded by highly concentrated production coupled with the disperse nature of sources suitable for potential supply increase. These factors challenge rapid growth, limiting deployment rate and magnitude. We estimate gigawatt-hour deployment scales are feasible over the next decade, which would represent marked expansion of the RFB industry and drive down system costs substantially, though this would require growth rates to vanadium production above historical averages. Accordingly, we review opportunities to accelerate supply chain growth and economic strategies to stabilize the market. Finally, we posit terawatt-hour deployment scales will be challenged by vanadium market conditions and resource availability, motivating the continued efforts developing next-generation RFB chemistries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.