Abstract
The ever-growing energy demand requires the exploration and the safe, profitable exploitation of unconventional reserves. The extreme environments of some of these unique prospects challenge the boundaries of traditional engineering alloys, as well as our understanding of the underlying degradation mechanisms that could lead to a failure. Despite their complexity, high-pressure and high-temperature, deep and ultra-deep, pre-salt, and Arctic reservoirs represent the most important source of innovation regarding materials technology, design methodologies, and corrosion control strategies. This paper provides an overview of trends in materials and corrosion research and development, with focus on subsea production but applicable to the entire industry. Emphasis is given to environmentally assisted cracking of high strength alloys and advanced characterization techniques based on in situ electrochemical nanoindentation and cantilever bending testing for the study of microstructure-environment interactions.
Highlights
Materials used in oil and gas (O&G) production are exposed to some of the most aggressive industrial environments
In the context of this article, high strength refers to materials with Specified Minimum Yield Strength (SMYS) values above the typical maximum currently recommended for forged carbon and low alloy steels (LAS) exposed to production fluids, i.e., 550–586 MPa (80–85 ksi)
Mannan and coworkers have recently introduced a new Precipitation hardened (PH) nickel-based Ni–Cr–Mo–W–Nb–Ti filler metal designated as UNS N06680 (NA680), Table 1.71 According to the authors, NA680 can be used to weld clad-oil country tubular goods (OCTG) with an SMYS, in the as welded condition, of up to 550 MPa (80 ksi)
Summary
Materials and corrosion trends in offshore and subsea oil and gas production Mariano Iannuzzi 1,2, Afrooz Barnoush[1] and Roy Johnsen 1. The extreme environments of some of these unique prospects challenge the boundaries of traditional engineering alloys, as well as our understanding of the underlying degradation mechanisms that could lead to a failure. Despite their complexity, high-pressure and high-temperature, deep and ultra-deep, pre-salt, and Arctic reservoirs represent the most important source of innovation regarding materials technology, design methodologies, and corrosion control strategies. This paper provides an overview of trends in materials and corrosion research and development, with focus on subsea production but applicable to the entire industry. Emphasis is given to environmentally assisted cracking of high strength alloys and advanced characterization techniques based on in situ electrochemical nanoindentation and cantilever bending testing for the study of microstructure-environment interactions. npj Materials Degradation (2017)1:2 ; doi:10.1038/s41529-017-0003-4
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have