Abstract

Shear wave elastography imaging of the ulnar collateral ligament (UCL) is used to help understand changes in material properties of the ligament. Ensuring that the wrist flexors are relaxed is essential as muscle contractions can alter the alignment of the medial elbow. The purpose of this study was to determine how the structural and material properties of the medial elbow respond to various elbow torques. The medial elbows of 20 healthy adults, free from upper extremity disorders, were imaged in 3 of the following torque conditions: (1)neutral relaxed, (2)passive valgus, and (3)active varus. Structural properties (ulnohumeral gap and UCL length) using B-mode and material properties (UCL and flexor muscle stiffness) using shear wave were measured. Passive valgus torque opened the ulnohumeral gap (P < .001), and increased UCL (P < .001) and wrist flexor stiffness (P = .001), compared with the neutral condition. Under an active varus contraction, the gap returned back to the neutral position, but UCL (P < .008) and wrist flexor stiffness (P < .004) remained elevated compared with neutral, meaning low-intensity torques can influence structural and material properties of the medial elbow. Therefore, effort should be taken to minimize muscle activation during imaging in order to accurately measure medial elbow properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call