Abstract

Microfabrication plays an active role in miniaturization of products and components in various emerging fields ranging from pharmaceuticals and bio-medical applications to electro-mechanical sensors and actuators to chemical microreactors and mechanical microturbines. Tool-based machining is one of the key technologies of microfabrication. The machining of materials on the micrometre and nanometre scales is fundamental for the fabrication of 3D micro components. However, there are limitations of scaling down the mechanical machining process from the macro- to micro- to nanoscales. Several factors that are not significant in conventional machining become significant in micro/nano-scale machining. This article identifies the important material-related issues on the evolution of micro cutting from conventional cutting process. The main focus is given to the state-of-the art micro/nano-cutting technologies of metal alloys with material perspective. Furthermore, a promising research of coupling the additive and subtractive manufacturing technologies has been highlighted to improve the surface quality of 3D-printed metallic parts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call