Abstract
Devices to treat peripheral nerve injury (PNI) must balance many considerations to effectively guide regenerating nerves across a gap and achieve functional recovery. To enhance efficacy, design features like luminal fillers have been explored extensively. Material choice for PNI devices is also critical, as the determining factor of device mechanics, and degradation rate and has increasingly been found to directly impact biological response. This study investigated the ways in which synthetic polymer materials impact the differentiation state and myelination potential of Schwann cells, peripheral nerve glia. Microporous substrates of polycaprolactone (PCL), poly(lactide-co-glycolide) (PLGA) 85:15, or PLGA 50:50 were chosen, as materials already used in nerve repair devices, representing a wide range of mechanics and degradation profiles. Schwann cells co-cultured with dorsal root ganglion (DRG) neurons on the substrates expressed more mature myelination proteins (MPZ) on PLGA substrates compared to PCL. Changes to myelination and differentiation state of glia were reflected in adhesion proteins expressed by glia, including β-dystroglycan and integrin α6, both laminin binding proteins. Importantly, degradation products of the polymers affected glial expression independently of direct attachment. Fast degrading PLGA 50:50 substrates released measurable amounts of degradation products (lactic acid) within the culture period, which may push Schwann cells towards glycolytic metabolism, decreasing expression of early transcription factors like sox10. This study shows the importance of understanding not only material effects on attachment, but also on cellular metabolism which drives myelination responses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have