Abstract

Abstract The design of efficient and safe biocompatible artificial implants for bone replacement and reconstructions requires a thorough understanding of natural bone material. A new homogenization approach is therefore used to predict effective material properties of the human femur bone. The bone structure is idealized as a functionally graded composite made of different quantities of a collagen protein matrix reinforced by hydroxyapatite mineral acting as the filler. Two distinct composite models were investigated, one where the mineral reinforcements were assumed to be randomly dispersed inclusions in a matrix of collagen, and a second model wherein the minerals were assumed to be unidirectional fibers. Predicted results for longitudinal and transverse elastic modulus from the models compare very well with range of values from published experimental data. It is also compared to those predicted using classical homogenization models. These material properties are then used to obtain the structural response of a bone plate section under transverse load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.