Abstract

Summary In this paper, the hybrid algorithm for localization of damage and defects is implemented on the concrete plate-like structures for localizing the clay and gypsum inclusions. The hybrid approach employs fast discrete wavelet decomposition of sensor output signals, as well as energy and time of flight criteria. The applied localization algorithm is verified both experimentally and numerically on the concrete plates with one and two inclusions. The experiment is conducted in controlled laboratory conditions, using a piezoelectric actuator for excitation of the wave propagation in the structure, while the ultrasonic laser is used for measuring vibrations at the sensor locations. Numerical simulation of wave propagation is done using the explicit finite element method on 3D models. The numerically obtained results are in full correspondence with the experimental results. The images of material defects positions obtained by the hybrid approach show a good agreement with the actual positions, which indicates a good potential of the used approach in localization of various types of material defects in plate-like concrete structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.