Abstract

This paper presents an experimental–numerical analysis of damage localization of concrete plate-like elements on the basis of hybrid approach. The proposed hybrid approach uses the fast discrete wavelet transform, energy approach, and time of flight criterion for the purpose of localization of single and multidamage problems inside or on the periphery of concrete elements. Verification of the proposed damage localization approach has been performed under laboratory conditions using a laser scanning-based system with piezoelectric excitation of the wave propagation. Numerical simulation of the wave propagation is performed using the explicit finite element method using 3D models with linear-elastic material model of concrete with Rayleigh damping. The Rayleigh damping coefficients are determined on the basis of experimental data and implemented in numerical models. Validation of the numerical model is conducted, based on the comparison with sensor output signals obtained through experimental measuring and a very good agreement of results is obtained. The proposed hybrid approach to damage localization is verified using 15 different models/specimens, varying the number, shape (circular or notched), and position of damage, as well as the number and placement of actuators/sensors. For all the analyzed scenarios, the hybrid approach successfully localized the damage even for the least number of used sensor positions. In the models with the circular damage, the damage image created on the basis of the hybrid approach is almost identical to the actual shape of the damage, indicating a good potential of the method for damage localization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.