Abstract

Leadfree solders have been used as interconnects in electronic packaging, due to its environmental friendly chemical property. However, those materials may experience high strain rates when subjected to shock and vibration. Consequently, failure will occur to electronics in those situations. Therefore, knowing the material properties of lead-free solders are extremely important, but research on mechanical behaviors of those solder alloys at high strain rates are scarce. Anand's viscoplastic constitutive model has been widely used to describe the inelastic deformation behavior of solders in electronic components under thermo-mechanical deformation. However, Anand's model constants for the transient dynamic strain rates are scarce. In this paper, the nine material parameters to fit the Anand viscoplastic model at high strain rates have been presented. In order to develop the constants for this model, uniaxial tensile tests at several strain rates and temperatures have been completed. A constrant strain rate impact hammer which enables attaining strain rates around 1 to 100 per sec has been employed to implement tensile tests and a small thermal chamber is applied to control testing temperature. High speed cameras operating at 70,000 fps have been used to capture images of specimen and then digital image correlation method is used to calculate tensile strain. Uniaxial stress-strain curves have been plotted over a wide range of strain rates (ε̇=10, 35, 50, 75 /sec) and temperatures (T = 25, 50, 75, 100, 125°C). Anand viscoplasticity constants have been calculated by non-linear fitting procedures. In addition, the accuracy of the extracted Anand constants has been evaluated by comparing the model prediction and experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call