Abstract

This work aims at characterizing the mechanical behaviour of polymethyl-methacrylate (PMMA) under high velocity impact conditions over a wide range of testing temperatures. To this end, the mechanical response at uniaxial compression is studied for both quasi-static and dynamic conditions covering testing temperatures below, at and above glass transition. A pseudo-brittle to ductile transition in the failure of PMMA is observed at a threshold that depends on testing temperature and strain rate. This analysis allows for the interpretation of the perforation impact tests and to explain the principal deformation and failure mechanisms. To complete the study, the Richeton model to predict yielding is revisited. Finally, we provide a new constitutive model for finite deformations to further identify the deformation mechanisms governing the mechanical behaviour of PMMA and the influence of temperature and strain rate on them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call