Abstract

Shape-memory polyurethanes (SMPUs) are promising materials that change shape in response to external heat. These polymers have a dual-segment structure: a hard segment for netpoint and a soft segment for molecular switch. Understanding the molecular behavior of each segment and microphase-separated morphology is crucial for comprehending the shape-memory mechanism. This study aimed to understand the shape-memory behavior by observing the phase separation of SMPU using mesoscale models based on dissipative particle dynamics (DPD) simulations. The SMPU copolymer was modeled using 4,4′-diphenylmethane diisocyanate (MDI, hard segment) and poly(ethylene oxide) (PEO, soft segment). By calculating segment solubility and repulsion parameters, we found that the hard-segment domain changes from isolated form to a lamellar and interconnected structure and eventually to a continuous form as its content increases. Combining these insights with shape-memory performance models can enhance our understanding of better SMPU design and contribute significantly to the optimization of smart stimuli-responsive materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.