Abstract
In the design of functionally graded materials, bi-directional design offers greater design freedom than the typical single-direction approach. This paper studies the shape and size design of variable-thickness bi-directional functionally graded plates (2D-FGPs) with multi-objective optimization. A method integrating generalized iso-geometrical analysis (GIGA) and an improved multi-objective particle swarm optimization algorithm (IMOPSO) is proposed, with numerous technical advantages. B-spline basis functions in two dimensions are used to robustly represent the volume fraction distribution, with volume fraction and shape profile at control points located along the plane set to be design variables. The mechanical behavior of the 2D-FGPs is treated with a third-order shear deformation theory and a non-uniform rational basis spline (NURBS)-based GIGA scheme. The IMOPSO algorithm incorporates chaotic sequence mapping, a diversity feedback mechanism, and a hybrid mutation mechanism to mitigate premature convergence and enhance evolution of the Pareto frontier. A number of test examples are provided, on square, circular, and gear FGPs with various loading configurations, optimizing for natural frequency and mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.