Abstract

Simultaneous description of critical point, vapor pressure and liquid density with an equation of state has been a hot research topic. In this work, the possibilities and limitations of the Cubic Plus Association equation of state for describing these properties of associating fluids have been studied. First a procedure is developed to determine the energy and co-volume parameters by converting the system of three equations at the critical point to a single variable root-finding problem. The procedure is then used in parameter estimation to simultaneously match the critical temperature and pressure as well as fit the vapor pressure and liquid molar volume of typical associating fluids. The performance of the estimated parameters is subsequently compared with the parameters fitted only to vapor pressure and liquid molar volume. The possibility of introducing an extra adjustable parameter to improve the performance is further explored. The results show that, for the studied associating fluids, the Cubic Plus Association equation of state with the obtained parameters can match the critical temperature and pressure exactly, fit the vapor pressure within 2% and the liquid molar volume within 3–4% in the range of temperature up to 0.95 critical temperature, while the model overpredicts the critical volume up to 18%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call